Генетически модифицированными считаются организмы с искусственно изменённым генотипом. Гмо-продукты создаются с целью удешевления питания людей и животных. В России разрешены к использованию 17 видов ГМ-линий пяти продуктов - сои, кукурузы, картофеля, риса,

Споры по поводу безопасности продуктов временами напоминают информационную войну за умы и желудки потребителей. Мнения учёных-исследователей подчас противоположны. Кому верить? Правомерно ли называть продукты с ГМО вредными в условиях отсутствия результатов серьёзных масштабных исследований?

Какие аргументы «за» достойны внимания?


Противники распространения продуктов генной модификации говорят о серьёзных рисках для здоровья людей и состояния окружающей среды:


Согласно действующему в России законодательству, производитель обязан указывать на маркировке продукта наличие ГМО, если их содержание выше 0,9%. Если вы не желаете употреблять в пищу трансгенные продукты, избегайте наличия в составе еды лецитина Е322, кукурузной муки и


Биотехнологические проекты давно перешагнули из области научного знания в область промышленно-коммерческого использования. Научно-технический прогресс нашел применение результатам фундаментальных биологических и молекулярно-биологических исследований в сельском хозяйстве, пищевой промышленности и фармацевтике, медицине и приборостроении. Особенно широко в последнее время эксплуатируются достижения генетики и молекулярной биологии в сфере производства новых сортов сельскохозяйственных растений и пород животных, обладающих разнообразными новыми признаками, отсутствовавшими у родительских видов/сортов.


Быстрое и массовое производство таких сортов, легкость и научная предсказуемость приобретения ими заданных свойств привели к их широкому использованию. Так в настоящий момент посевы ГМО (генетически модифицированных организмов) во всем мире занимают площади более 67.7 млн. гектар.


И, вместе с тем, в последние годы резко обозначился вопрос - насколько безопасны данные технологии, насколько адекватно соблюдаются Международные руководящие принципы техники безопасности ЮНЕП в области биотехнолгии, принятые еще в 1995 г.


Аргументы сторонников соблюдения принципов предосторожности заставляют в настоящий момент правительства многих стран Европейского союза, Азии и Африки вносить корективы в сельскохозяйственную политику и отказываться от производства ряда сортов ГМО. В мировой литературе развернулась острая дискуссия об обоснованности декларируемых рисков применения ГМО.


Многие аргументы сторонников соблюдения принципов предосторожности получили экспериментальное подтверждение (см. обзоры М.С.Соколова с соавт. (1), М Джованнетти (2))


Цель настоящего обзора - попытаться дать объективную оценку в первую очередь пищевых рисков.


1. Классификация рисков


Встраивание в геном организма-хозяина новых конструкций имеет цель получить новый признак, недостижимый для данного организма путем селекции или требующий годы работы селекционеров. Но вместе с приобретением такого признака организм приобретает целый набор новых качеств, опосредованных как плейотропным действием нового белка, так и свойствами самой встроенной конструкции, в том числе ее нестабильностью и регуляторным действием на соседние гены. Все нежелательные явления и события, происходящие при возделывании и потреблении ГМО, можно объединить в три группы: пищевые, экологические и агротехнические риски.


1.1. Пищевые риски

  • Непосредственное действие токсичных и аллергенных трансгенных белков ГМО.
  • Риски, опосредованные плейотропным действием трансгенных белков на метаболизм растений.
  • Риски, опосредованные накоплением гербицидов и их метаболитов в устойчивых сортах и видах сельскохозяйственных растений.
  • Риски горизонтального переноса трансгенных конструкций, в первую очередь в геном симбионтных для человека и животных бактерий (E.coli, Lactobacillus (acidophillus, bifidus, bulgaricus, caucasicus), Streptococcus thermophilus, Bifidobacterium и др.).

Экологические риски

  • Снижение сортового разнообразия сельскохозяйственных культур вследс¬твии массового применения ГМО, полученных из ограниченного набора родительских сортов.
  • Неконтролируемый перенос конструкций, особенно определяющих различные типы устойчивости к пестицидам, вредителям и болезням растений, вследствии переопыления с дикорастущими родственными и предковыми видами. В связи с этим снижение биоразнообразия ди¬корастущих предковых форм культурных растений и формирование «суперсорняков».
  • Риски неконтролируемого горизонтального переноса конструкций в ризосферную микрофлору.
  • Негативное влияние на биоразнообразие через поражение токсичными трансгенными белками нецелевых насекомых и почвенной микрофлоры и нарушении трофических цепей.
  • Риски быстрого появления устойчивости к используемым трансгенным токсинам у насекомых-фитофагов, бактерий, грибов и других вреди¬телей, под действием отбора на признак устойчивости, высокоэффек¬тивного для этих организмов.
  • Риски появления новых, более патогенных штаммов фитовирусов, при взаимодействии фитовирусов с трансгенными конструкциями, прояв¬ляющими локальную нестабильность в геноме растения-хозяина и тем самым являющимися наиболее вероятной мишенью для рекомбинации с вирусной ДНК.

Агротехнические риски

  • Риски непредсказуемых изменений нецелевых свойств и признаков модифицированных сортов, связанные с плейотропным действием введенного гена. Например, снижение устойчивости к патогенам при хранении и устойчивости к критическим температурам при вегетации у сортов, устойчивых к насекомым-вредителям.
  • Риски отсроченного изменения свойств, через несколько поколений, связанные с адаптацией нового гена генома и c проявлением как новых плейотропных свойств, так и изменением уже декларированных.
  • Неэффективность трансгенной устойчивости к вредителям через несколь¬ко лет массового использования данного сорта.
  • Возможность использования производителями терминальных технологий для монополизации производства семенного материала.

История вопроса Риски, связанные с производством биотехнологической продукции, начали обсуждаться в научной литературе с 1983 г. (3, 4). К середине 80-х г. в развитых странах вырабатывается государственная политика по биотехнологии. Так, например, в США контроль за использованием ГМО находится в юрисдикции трех агентств, американского Агентства по охране окружающей среды, американского Министерства сельского хозяйства, и американского Управления по санитарному надзору за качеством пищевых продуктов и медикаментов. Существует так же координационный комитет, осуществля¬ющий согласованную работу всех трех ведомств по данному вопросу. Цели, задачи и законы, регламентирующие деятельность этого комитета, были опубликованы в 1986 г. (5).


Практические оценки влияния ГМО на организм при их пищевом потреблении появилсь недавно. Первые широкоизвестные работы по пищевым рискам ГМО принадлежат А.Пуштаи, работавшему в Исследовательском Институте Рауэтт, Великобритания (6-8) и стали предметом широко извес¬тной дискуссии 1999-2000 гг.


Однако возможность формирования выраженного иммунного ответа на трансгенный белок, являющийся аллергеном и потребляемый в составе растительного продукта, были известны и ранее. Например, за три года до начала этой дискуссии, Х.С.Мэйсон с соавт. показали высокий иммунный ответ у мышей на трансгенный картофель, модифицированный капсидным вирусным белком (9). Поскольку работа была посвященна модели оральной иммунизации животных белками, продуцируемыми в трансгенных системах, результаты этой и подобных работ остались незамеченными для диетологов и аллергологов. Тем не менее, работы, посвященные механизмам иммунного ответа человека на лектины, в частности хлебного дерева и сои, связывающихся с иммуноглобулином IgA1 (10) и приводящим к слипанию эритроцитов (11), были хорошо известны.


А.Пуштаи показал влияние трансгенного картофеля, модифицированного лектином подснежника, на гистологическом уровне - на состояние слизистой оболочки кишечника, частичную атрофию печени и изменение тимуса, и на физиологическом - на относительный вес внутренних органов крыс, содержащихся 9 месяцев на соответствующей диете, по сравнению с контрольными, питавшимися нетрансформированным картофелем .


На страницах «BINAS News» опубликована полемика 1999 года, как критика и опровержение результатов А.Пуштаи, например, Д.Гейтхаусом, Ф.Дали, Р.Д.Брауном, так и позиция сторонников точки зрения А.Пуштаи, Б.Мифлина, Ж.Рифкина и др. (12). Тогда-же Е.Дришш и Т.Бег-Хансен публикуют меморандум, поддержавший А.Пуштаи и основанный на экспертной оценке его результатов группой из 20-ти (помимо авторов меморандума) ученых. Собственно, результаты Пуштаи были представлены в научной прессе после проведения экспериментов и подтверждения заявленных результатов сотрудником Абердинского Университета, С.В.Ивеном.


Позднее появляются работы, проведенные на культурах клеток крови человека и колоректальной карциномы, подтверждающие результаты А.Пуштаи, начинают разрабатываться методики, посвященные оценке пищевых рисков, связанных с действием потенциальных аллергенов.


Показательна история с сортом кукурузы StarLink® , скандал вокруг кото¬рой разгорелся в 2000-2001 гг. Эта кукуруза, трансформированная белком-токсином Bacillus thuringiensis Cry9C , была разрешена американским Агентством по охране окружающей среды к использованию с ограничениями, как кормовая культура в 1998 г.


Ограничение в использовании было вызвано результатами тестирования белка Cry9C на устойчивость к перевариванию пепсином и к нагреванию , показавшими устойчивость выше минимально допустимой. В результате неконтролируемого переопыления с пищевыми сортами, урожай из гибридных растений был использован для получения пищевых продуктов. В 2000 г. фирма «Авентис» предоставила материалы, подтверждающие возможность использования сорта StarLink® в пищевых целях.


Данные экспериментов по оценке токсичности и аллергенности модифицированного продукта всего на 10 крысах, якобы свидетельствали о его безопасности. В пользу своей точки зрения «Авентис» указывала на 30-летний опыт применения белка Cry9C в США в качестве инсектецида, и отсутствие данных в научной литературе по токсичному и аллергенному действию белка Cry9C.


Ряд публикаций, посвященных оценке аллергенности и других возможных воздействий на организм подопытных животных белками Cry9C и родственного ему Cry1Ab, показали отсутствие патогенного действия данных белков в составе ГМО. Тем не менее, существующие данные по аллергенности токсинов B. thuringiensis заставили провести дополнительные исследования аллергенности Cry-белков .


Были получены данные, свидетельствующие о выработке антител и, соответственно, формировании аллергичной реакции на белок Cry1Ac, и ограниченности методов определения иммунных реакций, в частности теста ELISA, не способного оценивать аллергенность гликозилированных эпитопов белков.


Гликозилирование - особенность многих аллергенов пищи, и известно, что Cry-белки имеют потенциально гликозилируемые участки, и взаимодействуют с мембранными аминопептидазами, что свидетельствует о наличии у Cry-белков гликозил-фосфатидилинозитольного мембранного якоря.


Эти данные подтверждают первоначально осторожную оценку в применимости сорта StarLink®и оправдывают постоянно ведущийся в США мониторинг сортов кукурузы и производимых из них пищевых продуктов на присутствие белка Cry9C.


Свойства белков, обладающих бактерицидной, фунгицидной и инсектицидной активностью, используемых для трансформации сортов сельскохозяйственных растений


Как правило, токсичным или аллергеным действием обладают трансгенные белки, обеспечивающие устойчивость растений-реципиентов к поражению различными видами насекомых, грибковым и бактериальным заболевани¬ям. Устойчивость обеспечивается действием белков, обладающих набором специфициских свойств. Среди них:

  • ферментативная активность к наиболее мажорным компонентам кле¬точной стенки целевых организмов (например, хитиназы для насекомых и грибов),
  • лектиновая активность (лектины и арселины), опосредующая связыва¬ние с определенными рецепторам и мембранными гликопротеинами и реакции гликозилирования и приводящая к слипанию клеток желудочно-кишечного тракта и нарушению работы пищеварительных ферментов насекомых - вредителей,
  • ингибирование рибосомальных белков (RIPs-белки), приводящее к нарушению синтеза новых белков клетками, контактирущими с RIPs,
  • ингибирование функций пищеварительных протеаз и амилаз целевых организмов,
  • формирование сквозных каналов в клеточной мембране (Cry- проток¬сины Bacillus thuringiensis, активизирующиеся после протеолитического расщепления), приводящее к лизису атакованных данными полипептидами клеток,
  • проникновение в виде фрагментов исходного белка через стенки кишечника и связывание с ганглиозидами клеточных мембран (растительные протоксины: уреазы и канатоксины), что приводит к экзоцитозу клеток различных типов, разрушению кровяных пластинок и сопровождается гибелью целевого организма.

Устойчивость к патогенам и вредителям формируется благодаря экспрессии генов этих белков под действием тканеспецифичных промоторов в целевых тканях и органах растения.


В настоящий момент практически все перечисленные классы белков используются при создании коммерческих сортов пищевых и кормовых растений. 4. Свойства трансгенных белков, обладающих инсектицидной активностью. Данные, приведенные в табл.1, свидетельствут о значительной токсичности или аллергенности представителей большинства указанных классов белков, при их введении перорально. Однако часть из них присутствует и в норме в различных видах употребляемой растительной продукции. Проявление токсичных свойств таких белков будет опосредовано тканевой спецификой их экспрессии и концентрацией самих белков или синтезируемых при их участии продуктов метаболизма, например, ферментов биосинтеза гликоалкалоидов (в частности, соланина) у пасленовых (например, у помидоров, баклажанов, перца. прим.ред). Для оценки пищевых рисков при создании устойчивых к вредителям сортов необходимо определить допустимую степень воздействия этих белков на организм, используя традиционные сорта пищевых культур - источников белков этих классов в качестве контроля. Так как число оцениваемых параметров потенциально очень велико, принципиальную роль в таких оценках играет информация о механизмах возможных влияний этих белков на человека и животных. Уреазы редко используются для трансформации растений (32а), так как для млекопитающих хорошо известен токсичный эффект ряда белков этого класса, выраженый при инъекционном введении белка. Вообще все белки этого класса имеют сходный набор ферментативных и лектиновых функций (33, 34). Известно, что канатоксины и уреазы не стойки к кислой среде, и поэтому при попадании с пищей в пищеварительный тракт разрушаются еще в желудке (35). Белки переваривабтся в составе растительной ткани, где они содержатся в строго определенных количествах, причем все этапы созревания, транспортировки и запасания белка идут в соответствии с естественными программами регуляции функций клетки. Как ведут себя трансгенные белки с повышенной экспрессией, насколько они доступны действию желудочного сока в составе трансгенной растительной ткани, необходимо выяснять в каждом конкретном случае. Тем более, что значительное увеличение экспрессии уреазы в трансгенных растениях (за счет плейотропных эффектов - см. ниже) показано, например, для коммерциализируемого сорта сои 30-4-2, устойчивого к пестициду Раундап (36). Свидетельством важности проверки активности уреаз в трансгенных сортах являются также данные о снижении индекса перевариваемости корма бройлерными цыплятами при повышении активности соевых уреаз в нем, даже не смотря на снижение активности трипсинового ингибитора (37). Неясно также, как изменяется кругооборот азота в трансгенном растении и каковы последствия этих изменений для разных биоактивных метаболитов, так как механизмы индукции активности уреаз растений пока не выяснены (38). Ингибиторы сериновых протеаз обладают множественными функциями. Выполняя у растений роль запасающих белков, белков-регуляторов апоптоза и внутриклеточного протеолиза, они дополнительно способны блокировать ферменты пищеварительного тракта насекомых, действуя как неспецифичные субстраты. Пищеварительные ферменты насекомых, в частности их функциональные домены, сохранили высокое структурное сходство с подобными ферментами позвоночных, в том числе и человека, что приводит к сходному действию на них используемых растительных белков-ингибиторов (33, 39-43) . Длительное воздействие на крыс соевыми ингибиторами протеиназ, в качестве пищевой добавки, или муки сырой сои, приводило к гипертрофии и гиперплазии поджелудочной железы, вплоть до неопластических новообразований и карциномы. Термальная обработка белков и пищи предотвращает эти эффекты (44). Подобное действие ингибиторов эндопептидаз сои на поджелудочную железу отмечено и для человека (45). Совершенно отсутствуют работы по трансгенным сортам, модифицированными ингибиторами протеаз, с проведенной оценкой пищевых рисков, связанных с употреблением сырой и переработанной продукцией. Тем более, что модификация подобными белками овощных культур, употребляемых в сыром виде, несет непосредственную опасность для потребителя . Здесь же следует отметить, что предлагается использовать в качестве трансгенных белков ингибиторы протеиназ млекопитающих, в частности белка-ингибитора бычьего трипсина, обладающего выраженным инсектицидным действием (46). Однако эффект длительного воздействия этих белков в составе трансгенной пищи вообще не изучен. Ряд растительных ингибиторов альфа-амилазы формируют комплексы с ферментами слюнных и поджелудочной желез и достигают максимальной активности при температуре от 35 до 50о С (47, 48). Некоторые ингибиторы альфа-амилаз хорошо известны как сильные аллергены, например, тетрамерный ингибитор амилазы пшеницы (49). В работах, посвященных свойствам белков этого класса и их прикладному использованию (50, 51), перечислено значительное количество токсичных и аллергенных растительных ингибиторов альфа-амилазы и указана необходимость сторгих оценок их пищевых рисков. Физиологическое действие арселинов на млекопитающих не изучено, но известно, что они близки по структуре и свойствам к фитогемагглютининовым лектинам и ингибиторам альфа-амилазы (52), что предполагает сходные пищевые риски. RIP’s белки, или ингибиторы рибосомальных белков, имеют узкую видовую специфичность к различным рибосомальным белкам. Они удаляют консервативный аденин из 28S субъединицы РНК, что препятствует сборке рибосом и приводит к гибели клеток. В силу своей видовой специфичности можно подобрать белки, обладающими инсектицидными, фунгицидными или бактерицидными свойствами (53, 54). Растения, трансформированные такими белками под специфическими вирусными промоторами, устойчивы к вирусным инфекциям, супрессируя выработку вирусных белков в инфицированных клетках (55). Но не стоит забывать, что рицин, один из сильнейших ядов, относится именно к этой группе белков . Другой пример: циннамомин, формирующий устойчивость трансгенных растений к личинкам насекомых, специфичен к 28S РНК крысы (56). Поскольку инактивация рибосом происходит необратимо, даже слабая аффинность RIP’s к рибосомальным белкам млекопитающих будет приводить к эффекту накопления. Поэтому проверка безопасности таких белков, выделенных в составе экстракта из трансгенного растения, должна проводиться длительное время, в том числе и на культурах человеческих клеток (что не делается) . Лектины были одними из первых трансгенов при формировании устойчивости к насекомым. Связываясь с гликанами на поверхности клетки, они приводят к слипанию клеток и нарушению физиологических функций организма. С этим свойством растительных лектинов связана 40-летняя история их применения в качестве цитотоксических препаратов при химиотерапии раковых заболеваний (57, 58). О формировании иммунного ответа на некоторые трансгенные лектины мы упомянули в разделе «история вопроса» (6-8, 10, 11). Высокие пищевые риски при использовании лектинов были подтверждены и в других исследованиях . Так, лектин нарцисса, обладающий ярко выраженными свойствами инсектицида, является мутагеном, причем наиболее сильное мутагенное действие показано на культурах лимфоцитов человеческих эмбрионов и из периферического кровотока детей раннего постнатального периода развития (59). Эти данные показывают опасность использования данного лектина и близких к нему в первую очередь для наиболее молодой части человеческой популяции. Проводимые работы с трансгенными инсектицидными лектинами бразильского ореха Bertholletia excelsa были прекращены в связи с их высокой аллергенностью (60, 61). Хитин-связывающие лектины из проростков пшеницы и фасоли обладают огромным инсектицидным потенциалом, но при этом токсичны для млекопитающих. Поэтому первоначально полученные трансгенные сорта кукурузы с широким спектром устойчивости к вредителям оказалось невозможным использовать в пищевых целях (62). Для трансформации растений ферментами, разрушающими мажорные компоненты клеточной стенки вредителей, обычно хитина, используют растительные хитиназы, и хитиназы бактерий и насекомых (62, 63). Трансгенные конструкции на основе хитиназ сейчас очень популярны: хитиназами модифицированы различные сорта риса (64-66), картофеля (67, 68), пшеницы (69) и других культур. В то же время хорошо известны так называемые «латексные» или «банановые» аллергии, главным аллергеном в которых выступают хитиназы авокадо, бананов, каштана (70, 71). Хотя показана высокая аллергенность только хитиназ 1-го класса, возможная модификация трансгенного белка и близость структур хитиназ разных классов требует тщательной проверки на аллергенность всех трансгенных по хитиназам сортов (что не сделано). Устойчивость к болезням может также индуцироваться не только белками, но и продуктами обмена веществ - вторичными метаболитами. Сорта кукурузы, табака и томатов с увеличенной экспрессией кислых пероксидаз вырабатывают в листьях повышенное содержание лигнина, препятствующего поражению растений насекомыми-вредителями (72). Продуктами разложения лигнина являются токсичные и мутагенные фенолы и метанол. Поэтому увеличение содержания лигнина в силосной массе, плодах или листьях табака представляет прямую опасность. Картофель, устойчивый к ряду болезней, модифицированный пероксидазой и кислой хитиназой, помимо лигнина содержит сублетальное (для растения) количество перекисных радикалов (68). При этом не изучено, как будут модифицироваться в этих условиях алкалоиды, которыми богаты пасленовые (см. Раздел «Плейотропные влияния трансгенных белков»). В заключение этого раздела - об аллергиях. Аллергия на продукты питания - явление достаточно распространенное и неуклонно растущее среди населения развитых стран. Это связано, в первую очередь, с неблагоприятной экологической обстановкой, изменением традиционного рациона питания, к которому каждый народ адаптировался на протяжении многих веков, и современными технологиями пищевой промышленности, приводящими к повышенному содержанию в пище различных ксенобиотиков. И в этом смысле характеристикам трансгенных белков, обладающих инсектицидной активностью, необходимо уделить пристальное внимание, поскольку примерно половина патогенез-зависимых белков растений являются аллергенами (73). Повышение их содержания в устойчивых к заболеваниям сортов растений имеет прямой риск повышения аллергенности продуктов питания, изготовленных на основе этих сортов. Детские аллергии - экссудативный диатез и нейродермит, вообще имеют особый статус в аллергологии. Иммунная система человека окончательно формируется только к 12-14 годам, а кишечная флора, адаптированная к «взрослой» пище - к 3-м годам. Слизистая оболочка пищеварительного тракта ребенка обладает повышенной проницаемостью, как для питательных веществ, так и для патогенов. Это компенсируется высоким содержанием разнообразных иммуноглобулинов и лимфоцитов в крови и слизистой оболочке кишечника ребенка. Детский организм остро реагирует на «чужие» белки, к которым он не адаптирован, отсюда - особенно высокая чувствительность к аллергенам. Исходя из многочисленных наблюдений, фармакологи рекомендовали полностью исключить ГМО из состава детского питания (74). Начиная с 2004 года в странах Европейского Союза использование ГМО в продуктах детского питания, предназначенного для детей до 4-х лет, полностью запрещено. Пищевые риски, связанные с устойчивостью ГМО к гербицидам. Устойчивость возделываемых сортов к действию пестицидов дает большой экономический эффект - ручная или машинная прополка заменяется быстрой и сравнительно дешевой обработкой пестицидами, приводящей к гибели сорняков. Эта практика ведет к увеличению масштабов использования гербицидов , и, соотвественно их воздействия на окружающую среду, а также вызввает быстрый отбор видов-сорняков, обладающих повышенной устойчивостью к применяемым пестицидам (1, 75). Для придания растению повышенной устойчивости к такому распространенному гербициду, как глифосат, используют конструкции на основе одного из двух генов: EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) и GOX (глифосат оксидоредуктаза). Сами по себе эти белки не являются ни аллергенами, ни токсинами. Для оценки безопасности пищевого примения таких сортов, необходимо знать: какова способность таких сортов к накоплению ядовитых для человека и животных инсектицидов, и не происходит ли накопления других ядовитых метаболитов или аллергенов под действием плейотропных эффектов трансгенных конструкций. Следует иметь ввиду, что практически все пестициды токсичны для человека. Глифосат, например, является канцерогеном, вызывая лимфому (76). Обычно в работах, посвященных получению устойчивых к гербицидам сортов и их свойствам, указывают на отсутствие негативных свойств, подтвержденных многочисленными проверками (77). Действительно, исходя из правил получения и дальнейшей валидации трансгенной культуры, оцениваюся перевариваемость белков и состав метаболитов нового сорта, учитывается количество встроенных конструкций и нецелевые изменения свойств сорта, отбираются только стабильные трансформанты. Сотрудниками фирмы «Монсанто» было показано, например, хорошее соответствие состава модифицированной сои, устойчивой к глифосату, и родительского традиционного сорта (78). Но в литературе имеются данные, что при обработке глифосатом устойчивых к нему сортов сахарной свеклы, растения накапливают токсичные метаболиты глифосата (79). Более того, показана способность репродуктивных тканей (!) хлопчатника, устойчивого к глифосату, к очень высокому накоплению этого гербицида - от 0,14 до 0,48 мг/г (80). Это чрезвычайно важно, так как такие дозы при употреблении в пищу будут смертельными (допустимые дозы остаточного глифосата и его токсичных метаболитов в пищевых продуктах в США - 0,02 мг/кг сухого вещества). К сожалению, информация по анализу остаточных концентраций гербицидов в устойчивых сортах в сопровождающих документах и описаниях отсутствует. Насколько широко распространено это свойство устойчивых к глифосату сортов, какова тканевая специфичность накопления глифосата - неизвестно. Другим эффективным и распространенным гербицидом является атразин. Устойчивость картофеля и табака к его действию обеспечивается встраиванием в геном цитохрома CYP1A1, представителя класса P450 цитохромов (81, 82). Вместе с тем, известно немало работ, посвященных канцерогенным, иммунотоксичным и эмбриотоксичным свойствам этого вещества (например 83, 84). И в этом случае вопрос о накоплении этого гербицида в устойчивых к нему сортах не привлекает внимания разработчиков. А пищевой риск такого накопления огромен. Риски, связанные с плейотропными влияниями трансгенных белков и конструкций, определяющих устойчивость к гербицидам, мы рассмотрим в следующем разделе. Модификация метаболизма и плейотропные влияния трансгенных белков. Пищевые риски могут быть связаны с действием плейотропных эффектов как самих трансгенных белков, так и регуляторным действием встроенных конструкций. Выше уже упоминалось усиление активности уреаз в трансгенном сорте сои, устойчивой к гербициду раундап (36). Несмотря на правила валидации трансгенных сортов, обнаружить нецелевые изменения метаболизма, активности различных белков, включая лектины и фитогормоны, не просто - исследователь не знает точно, что проверять. Изменения могут быть не количественными, а качественными, например, состава минорных фракций гликоалкалоидов, которые совместно могут обладать многократным синергетическим усилением мембранолитической активности. Существуют ли объективные основания для таких опасений? С конца 90-х годов проводилость изучение биосинтеза флавоноидов, природных антиоксидантов, участвующих в защите тканей растения от негативных последствий фотохимических реакций, на модели трансгенных растений (85). В настоящий момент существуют трансгенные сорта помидоров (86) и картофеля (87) с усиленной продукцией флавоноидов. Принято считать, что повышенное содержание флавоноидов на организм человека положительно. Но такое изменение метаболизма растений может приводить к росту пищевых рисков. Так, масс-спектрофотометрический анализ трансгенного картофеля показал резкое изменение состава минорных фракций гликоалкалоидов (87). Для оценки пищевых рисков в таких случаях необходимо проведение долговременных тестов, которые пока не проводятся. Проводя работы по созданию трансгенных растений с устойчивостью к стрессующим факторам и для увеличения урожайности, используют ключевой фермент синтеза полиаминов - аргинин декарбоксилазу (88). Результатом гиперэкспрессии этого фермента у трансгенных табака и риса является повышенное содержание агматина - его непосредственного метаболита, и в ряде случаев - рост концентрации вторичных метаболитов путрисцина, спермидина и спермина (88, 89). При этом как агматин, так и его производные, являются биологически активными веществами, способными взаимодействовать с адренэргическими, имидазолиновыми и глутаматными рецепторами, выступая для организма человека в роли как нейромедиаторов, так и активаторов мито¬за и способствуя опухолеобразованию (90, 91). Будучи небелковой природы, эти вещества легко усваиваются организмом. Адекватность используемых в настоящий момент тестов для проверки таких рисков сомнительна. Не обойдены вниманием производителей и цитокинины - растительные гормоны, производные пурина . Сорта томатов, модифицированных генами изопентилтрансферазы и бактериальной фитоэнсинтазы, обладают повышенной продуктивностью (92, 93). Однако сложнейшая регуляторная сеть, включаемая действием цитокининов в организме растения и затрагивающая как метаболизм, так и разнообразные тканевые и ростовые процессы, только изучается (94), и предсказать все эффекты от такого рода изменений пока невозможно. Но показано, что содержание фитогормона зеатина пуринового ряда и его производных растет (94а). Известны сильнейшие эффекты этих гормонов на клетки человека и млекопитающих различных типов (95, 96), за счет модуляции Ras - опосредованных клеточных сигнальных каскадов (97), ацетилхолинэстеразной активности (98), активности пуринорецепторов (99). Пока допустимые безопасные концентрации используемых фитогормонов в растительных продуктах не будут определены, остается высоко вероятным пищевой риск с использованием этих технологий. У сорта пшеницы, модифицированного кислой глюконазой и хитиназой, наблюдалась гиперэкспрессия специфицеской фенилаланин-аммоний лиазы и связанное с этим накопление салициловой кислоты, приводящее к некрозам растительной ткани (100). Сама салициловая кислота обладает массой полезных свойств, и в модифицированном виде хорошо известна как аспирин, вот только в качестве пищевой добавки к хлебу или макаронным изделиям она может не подойти. Риски производства фармацевтических препаратов в ГМО. В 2003 г. возник термин «Фармагеддон» (101). Основанием служит большое число сортов риса и кукурузы, разрабатываемых и культивируемых различ¬ными биотехнологическими компаниями, несущих биологически активные вещества, в том числе: вакцины, гормоны роста, факторы свертывания крови, индустриальные энзимы, человеческие антитела, контрацептивные белки, подавляющие иммунитет цитокины и вызывающие аборт препараты. Существуют (101, 102) следующие риски неконтролируемого использования такой продукции: угроза переопыления и неконтролируемого распространения таких сортов среди пищевых; риск неконтролируемого экспонирования пищевых вакцин беременным; распространение вакцин и биоактивных веществ, выделяющихся в естественных условиях из растительных остатков через почвенные и поверхностные воды. Насколько обоснованы эти риски? При переносе пыльцы растений ветром или насекомыми на места произрастания других сортов этого же вида, а также при случайном смешивании сортового материала, образуются гибридные растения, несущие признаки обоих сортов. Пример с сортом кукурузы StarLink ® - не единственное подтверждение реальности таких рисков. В Мексике и Гватемале дикорастущие виды кукурузы уже плотно насыщены трансгенными вставками, за счет переопыления с возделываемыми культурными сортами (1). В то же самое время, на рисовых полях Калифорнии среди пищевых сортов риса проводятся открытые полевые испытания сортов риса, несущего человеческие белки лактоферрин и лизозим, используемые в фармакологии при энзимотерапии. Американская компания «Эпицит» недавно сообщила о создании и испытаниях сорта кукурузы, вырабатывающего человеческие антитела на поверхностные белки спермы, с целью получения противоза¬чаточных препаратов (102). Неконтролируемое переопыление такого сорта с пищевыми может привести к серьезным демографическим последствиям на территориях, где производится подобная продукция. Неконтролируемое распространение вакцин в составе пищевых продуктов обладает не меньшим риском. В ходе эмбриогенеза формирующаяся иммунная система «учится» распознавать «свои» белки, не путая их в дальнейшим с «чужими». Белки, экспонируемые клеткам иммунной системы во время эмбриогенеза, запоминаются как «свои». Если белок вакцины в это время попадет в кровоток эмбриона, то родившийся ребенок не сможет вырабатывать иммунитет к данному заболеванию, всегда распознавая данную бактерию или вирус как «свой». При сборе урожая любой пищевой культуры огромная масса растительных остатков - листвы, стеблей и корней, остается на полях. Вероятность прямого распространения в почвенных водах белков, входящих в состав растений, низка, хотя значительно выше вероятность горизонтального переноса трансгенных конструкций в почвенных и других бактерий (см. далее). Но, кроме этого, существует еще один аспект рисков - это неконтролируемая вакцинация птиц и млекопитающих, обитающих в данной местности. Если трансгенные вакцины направлены против бактерий и вирусов, имеющих местных животных в качестве переносчиков (или бактерий, родственных человеческим болезнетворным бактериям), то такая вакцинация спровоцирует мощный отбор среди патогенов и формирование суперинфекций. Риски горизонтального переноса трансгенных конструкций. Горизонтальный перенос генов широко известен в царстве бактерий. В ходе эволюции обмен генами осуществлялся как между ними, так и между бактериями и эукариотами. Способность обмениваться участками генома бактерии сохраняют до сих пор. И это свойство бактерий имее прямое отношение к экологическим и пищевым рискам испольгования ГМО. Нахождение в желудочно-кишечном тракте в составе пищи собственно ферментов, использующих антибиотик как субстрат, практически безопасно для человека и животных. Ферментам необходимы строго определенные условия для проявления активности, поэтому белки, осуществляющие внутриклеточный метаболизм, функционировать будут только в составе живой клетки. Вероятность встраивания трансгенной конструкции из растения в геном млекопитающих и человека ничтожно мала. Следует учитывать, что клетки высших эукариот имеют несколько изолирующих барьеров, эффективно препятствующих горизонтальному переносу. Даже в случае такого переноса клетка, как правило не размножается, находясь в терминальной стадии дифференцировки. Перенос конструкции в половые клетки вообще невероятен, учитывая гемато-тестикулярный барьер, не проницаемый для крупных молекул. Но не следует забывать, что человек имеет эндосимбионтов, в частности, кишечную бактериальную флору. Известно, что бактерии способны к трансформации как кольцевыми, так и линейными формами ДНК с инвертированными повторами (103). Фрагменты трансгенной ДНК в содержимом кишечника, крови и молоке животных, питающихся ГМО (у коров - 104, у свиней - 105). При этом, в соответствии с часто применяемой методикой отбора трансгенных конструкций под действием антибиотиков, эти фрагменты несут репортерные гены устойчивости к антибиотикам в качестве маркерных последовательностей (77, 106). Эти гены могут быть как молчащими, так и нормально экспрессирующимися. В любом случае, трансформация ими симбионтных или патогенных бактерий может «включить» их уже в составе бактериального генома, например, путем рекомбинации и возникновения т.н. химерных белков, обладающих ферментативной активностью по отношению к антибиотику. Это ведет к формированию устойчивости к антибиотикам или самих симбионтных бактерий, или патогенной флоры. Результатом использования антибиотика при заболевании будет быстрый отбор бактерий, устойчивых к нему, и антибиотик либо начнет перерабатываться непосредственно в кишечнике, не достигая целевых патогенных бактерий, либо не будет оказывать влияния на резистентные к нему патогены. Поскольку основные бактерии-симбионты живут в толстой кишке, риск метаболизма антибиотиков бактериями кишечной флоры касается, в основном, плохо всасывающихся антибиотиков, например неомицина и канамицина. Трансгенные конструкции, несущие в качестве маркерного признака устойчивость как раз к таким препаратам, и были широко использованы биотехнологическими компаниями. Сценарии риска трансформации бактерий растительными конструкциями подвергались критике, например А.Л.Коновым (107), на основании экспериментальных данных, демонстрирующих низкую частоту передачи наследственного материала от ГМО-организмов болезнетворным бактериям. Обратимся к цифрам и фактам. Порядок частот трансформации для разных штаммов бактерий при обнаружении трансформированных колоний составлял 10-4 -10-8 , при отсутствии таковых - не выше 10-16 . Число симбионтных бактерий в одном грамме содержимого кишечника достигает 10-11 .При пересчете на общее содержимое кишечника это даст вполне высокую вероятность трансформации бактерий-симбионтов. Для Escherichia coli давно известно большое число патотипов, имеющих различия от нескольких до 1387 новых генов, расположенных в штамм-специфических кластерах и приобретенных в разное время путем горизонтального переноса (108, 109). То-есть, горизонтальный перенос генов для нее не исключительное событие. Что касается передачи устойчивости к антибиотикам между различными бактериями, то это вполне доказанное явление. Был показан перенос устойчивости к антибиотикам от патогенных Acinetobacter baumannii к E.coli и Proteus mirabilis (110). Действительно, эффективная бактериальная система переноса генов устойчивости к антибиотикам представлена IncQ-подобными плазмидами, передающимися между E.coli, Acinetobacter sp. и другими штаммами бактерий (111). И вероятность формирования рекомбинантных плазмид, несущих новые гены из конструкций, с новой устойчивостью к пока эффективным антибиотикам, пока никак не оценивалась. В связи с изложенным выше материалом по свойствам белков с инсектицидной активностью возникает еще один риск - формирования новых патогенных штаммов E.coli. Показано, что широко используемый в трансгенных конструкциях 35S промотор вируса CaMV, контролирующий экспрессию целевого гена, распознается транскрипционным комплексом широкого спектра видов бактерий (112, 113). При этом велика вероятность получения химерных белков с непредсказуемыми свойствами. Какова специфичность экспрессии других используемых промоторов - предстоит оценить, и без такой оценки говорить о безопансости используемой ГМ-технологии. В некоторых работах оценка рисков горизонтального переноса проводится на основе анализа методами ПЦР (полимеразной цепной реакции) мускулатуры животных, питающихся трансгенной растительной пищей (114). Очевидно, подобный подход совершенно не обоснован, и отсутствие маркеров конструкций в мускулатуре, вполе ожидаемое, никак не связано с реальными рисками горизонтального переноса. Характеристики плейотропных влияний (или отсутствие таковых) встроенных генов и конструкций, проведенные с непосредствнно полученным сортом, должны меняться с течением времени. Это связано с нестабильностью ряда конструкций, способных к перемещению в геноме и амплификации с течением времени. Уже известны примеры по изменениям в геноме трансгенных растений, связанные с наличием «горячих точек» рекомбинации в конструкциях (115). Эти процессы резко снижают надежность и устойчивость однажды заявленных производителями свойств новых трансгенных сортов. Критика метода отбора трансформированных культур по устойчивости к антибиотикам привела к тому, что использование репортерных генов устойчивости к антибиотикам запрещено для получения новых пищевых сортов, такие сорта изымаются из обращения. Тем не менее, во многих случаях использование плазмид, содержащих нетранскрибируемые копии генов устойчивости к антибиотикам продолжается. И продолжается использование таких запрещенных сортов: согласно сообщению Mr. Morley от 25 июня 2003 года в Английском парламенте, в Англии на полях с ГМО сортами растений были найдены сорта, несущие гены устойчивости к канамицину и неомицину, ампициллину и амоксициллину, и к гидромицину.(115а) Заключение Отмеченные выше факты неблагоприятного воздействия трансгенов на организм человека и животных не свидетельствуют о порочности технологии создания ГМО как таковых. Мы обращаем внимание на актуальность проблемы анализа пищевых и прочих рисков использования ГМО, на необходимость выработки норм экспертизы и тестирования новых сортов, с учетом уже известных рисков и постоянному жесткому контролю ГМО по исходным, не модифицированным сортам. Безусловно, оценка таких рисков всегда будет относительна - любые употребляемые нами продукты питания способны осуществлять разнообразные воздействия на организм, а в процессе производства любой пищевой продукции происходит вмешательство человека в окружающую природу. Имеющиеся данные, лишь часть которых была кратко описана в настоящем обзоре, показывают, что есть немало уже доказанных случаев реальных пищевых рисков, связанных с использованием генетически модифицированных организмиов по сравнению с исходными организмами. Однако в условиях монополизации и производства семенного материала, и его экспертизы одной или несколькими крупными биотехнологическими корпорациями трудно ожидать объективных оценок этих рисков. В результате, проблема «регуляции рисков» может превратиться в проблему «рисков регуляции» (116, 117).

Человек с глубокой древности изучал окружающий мир, стараясь находить понятные объяснения происходящим явлениям. Вера в высшие силы, многочисленные мифы породили религию, но потом пришло время современной науке, дающей детализированные ответы происходящим вещам – от молекулярного уровня до вселенских миров. Если посмотреть на инопланетную расу зергов из знаменитой игры StarCraft, то сразу бросается в глаза особенность: они нашли возможность «всасывать» генетическую составляющую различных организмов и затем менять свой геном, легко адаптируясь и приспосабливаясь к новым условиям окружающей среды. Выдумка создателей игры кажется фантастической, но на самом деле естественные возможности земных живых организмов довольно близки к тому, что умеет вымышленная раса зергов.

Современное общество до сих пор верит в мифы, которыми покрыты многие научные достижения лучших умов планеты, но в большинстве случаев это вызвано элементарным отсутствием колоссального объема знаний, чтобы разобраться, о чем, собственно, идет речь. Сегодня активно распространяются мифы о вредности пищевых добавок, прививок, ну и конечно ГМО, странного и непонятного уму словосочетания. Паранойя достигла своего пика – этикетки «Не содержит ГМО» можно встретить даже на бумажных салфетках.

Давайте спокойно разберемся, что же такое ГМО, для чего они необходимы, насколько опасны для здоровья человека и какова польза от них. Многих беспокоит, есть ли научные доказательства их безопасности и насколько они правдивы.

Что представляет собой ген и генотип

Сегодня информации о ДНК достаточно много – более двух миллионов научных трудов посвящается этой длиннющей молекуле, состоящей из двух цепочек, скрученных в спираль. Все знают, что ДНК – это носитель наследственной информации, или генома, который находится в любой клетке организма и отвечает за сохранность уникальной информации об этом организме. ДНК – огромная по размерам молекула, достигающая в развернутом виде нескольких сантиметров. Она включает в себя последовательность генов, которые наряду с условиями внешнего мира (для развития и роста) определяют фенотип, то есть, как будет выглядеть внутренне и внешне организм. Также программируются особенности происходящих внутри особи процессов. Каждый ген закладывает код в производство функциональной РНК или белка – именно они потом принимают участие в биохимических процессах, происходящих в организме.

Белков в нашем организме великое множество, и назначение у всех свое. ДНК различны , ведь люди отличаются друг от друга, но они имеют свойство постоянно меняться – это происходит под влиянием внешних факторов. Поэтому в ДНК происходят мутации – трансформация молекулы, изменение генов, их «остановка или запуск». Согласно эволюционной теории удачные мутации остаются, а организмы, неудачно мутировавшие – погибают или отсеиваются. Положительные мутации дают возможность выжить в сегодняшних условиях окружающей среды, а вот человек закрепляет в животных и растениях те свойства, которые ему выгодны и необходимо для улучшения качества жизни и доходности – крупные по размерам фрукты, коровы, приносящие больше молока. Вот для этого и создана генетическая модификация и селекция.

Методы естественной инженерии

Принцип модификации геномов растений, схожий с агробактериями, составляет основу главного средства генной инженерии, используемого при выращивании овощей и фруктов. В почве живут агробактерии, у которых гены наделены способностью кодировать ряд специальных белков, обладающих свойством «протаскивать» конкретную молекулу ДНК в клетку любого растения. После этого ДНК встраивается в растительный геном, заставляя его вырабатывать полезные вещества, необходимые бактериям для питания и роста. Наука переняла эту разработку и начала активно ее применять – была произведена замена гена, необходимого бактериям на те, которые кодируют белки, нужные в сельскохозяйственном производстве. В качестве примера можно привести Bt-токсины, не представляющие опасность для млекопитающих, но губительны для насекомых-вредителей конкретного вида. Или белки, которые заставляют растение противостоять определенному гербициду.

Многие бактерии, даже не из родственных групп, часто меняются генами – именно по этой причине устойчивые к пенициллину микробы вышли на свет спустя уже пару лет с момента его активного применения. В современной медицине проблема устойчивости микробов к антибиотикам становится насущной.

Начиная вирусами, и заканчивая организмами

Знаете ли вы, что процесс естественной «генной инженерии» кроме бактерий подвластен еще и вирусам. Некоторые организмы, так же как и человек, имеют геном, содержащий транспозоны – это бывшие вирусы, встроенные в хозяйские ДНК, и в большинстве случаев, не причиняя ему никакого вреда. Находясь в геноме, они способны перемещаться по разным местам.

Если рассмотреть ВИЧ (ретровирус), то он обладает способностью внедрять собственный генетический материал прямиком в геном эукариотичных клеток (к примеру, человеческих клеток). Генам аденовирусов не обязательно делать также, так как они могут встраиваться и функционировать без внедрения своей генетической информации в растительные или животные геномы. Целый ряд вирусов нашли активное применение в генной терапии – они помогают лечить широкий комплекс заболеваний, передающихся по наследству.

Подведем итоги: естественная генная инженерия в окружающем нас мире применяется достаточно активно и играет существенную роль для адаптации организмов к изменяющейся природной среде. Важен тот момент, что абсолютно все живые организмы регулярно подвергаются случайным мутациям, и их геномы претерпевают изменения.

Сделаем заключение: любой организм, если сравнивать его с предками, по сути, представляет собой уникальный, непохожий генетически модифицированный организм. Его геном содержит не только новейшие мутации, но и измененные комбинации существовавших до него вариаций ДНК. Новорожденный ребенок имеет геном с десятками генетических вариантов, не имеющих ничего общего с родительскими. Каждое поколение, появляющееся на свет, обладает новыми, преобразованными на основе родительских геномов, комбинациями.

Безопасность ГМО в ходе многочисленных экспериментов

Во всех СМИ ведется активное обсуждение интересующего многих вопроса – насколько безопасны пищевые продукты, в состав которых входят ГМО или генетически модифицированные организмы. Результаты проводимой человечеством генной инженерии правильнее было бы трактовать, как «генетически модернизированные организмы», ведь данная отрасль только лишь ускоряет естественные природные процессы на генном уровне, направляя их в русло, выгодное человечеству.

Безопасность ГМО в ходе многочисленных экспериментов проверяется уже несколько десятков лет. Миру было предоставлено более 1800 научных работ, посвященных исследованию данного вопроса. Было, конечно, исключение – ген бразильского ореха, встроенного в генетически модифицированный сорт сои – его белок вызвал аллергию во время изучения реакции сыворотки крови.

Стоит отметить 12 экспериментальных исследований, касательно безопасности употребления в пищу ГМО, которые публиковались в 2012 году – опыты проводились на животных в нескольких поколениях. В это же время было представлено еще 12 трудов, целью которых было изучить последствия употребления ГМО животными на протяжении длительного срока: от 3 месяцев до 2 лет. Был проведен сравнительный анализ с аналогичными продуктами без ГМО и сделаны обоснованные выводы об отсутствии каких-то отрицательных эффектов.

Прежде, чем верить всяким «страшилкам» из телевизионного ящика и газет, бегающих за «выдуманными» сенсациями и разоблачениями, потрудитесь узнать, что говорят ученые умы. Тогда вы сделаете правильные выводы, вредны ли на самом деле передовые достижения науки. А может они не представляет никакой опасности для здоровья Вас и вашей семьи, как пишут газеты?

Экология

Вопрос о пользе или вреде генетически модифицированных продуктов стал подниматься, как только такого рода продукты появились в природе. Некоторые защитники такого производства стали говорить: " Это единственный способ прокормить бедных! ГМ урожаи приносят пользу фермерам! Продукты с ГМО – безопасны!" и так далее… Однако противники употребления таких продуктов находят множество опровержений.

Предлагаем узнать о 10 причинах, почему следует избегать генетически-модифицированные продукты, о которых рассказал Джеффри Смит (Jeffrey Smith) из Института Ответственных Технологий . Эксперт в области ГМО расскажет о тех опасностях, которые скрываются за продуктами, произведенными с использованием генетически-модифицированных организмов.


1) ГМО – очень нездоровая пища

Американская Академия Экологичной Медицины призывает врачей ограждать пациентов от употребления продуктов с ГМО. Они ссылаются на исследования о том, что такие продукты вредят органам, пищеварительной и иммунной системам, ускоряют процессы старения и приводят к бесплодию. Исследования человека показывают, что такие продукты могут оставлять в организме особый материал, который за длительный период вызывает множество проблем со здоровьем. Например, гены, которые внедряются в соевые бобы, могут переноситься в ДНК бактерий, которые живут внутри нас. Токсичные инсектициды, которые производит генетически-модифицированная кукуруза, попадают в кровь беременных женщин и плода.

Большое количество заболеваний появилось после того, как в 1996 году стали производить генетически-модифицированные продукты. В Америке число людей, страдающих тремя и более хроническими заболеваниями, возросло с 7 до 13 процентов всего за 9 лет. Стремительно поднялось количество пищевых аллергий и таких проблем, как аутизм, репродуктивные нарушения, проблемы с пищеварением и другие. Хотя пока не было детальных исследований, которые подтвердили, что всему виной ГМО, специалисты Академии предупреждают, что не стоит ждать, когда придут эти проблемы и следует уже сейчас защищать свое здоровье, особенно здоровье детей, которые находятся под самым большим риском.

Американская Ассоциация Здравоохранения и Американская Ассоциация Медсестер также предупреждают, что модифицированные гормоны роста жвачных животных повышают уровни гормона IGF-1 (инсулиновый фактор роста 1) в коровьем молоке, который связан с развитием рака.

2) ГМО все больше распространяются

Генетически модифицированные семена постоянно распространяются по миру естественным путем. Невозможно полностью очистить наш генофонд. Самораспространяющееся ГМО могут пережить проблемы глобального потепления и последствия, вызванные ядерными отходами. Потенциальное влияние этих организмов очень велико, так как они угрожают последующим поколениям. Распространение ГМО может вызвать экономические потери, делая уязвимыми фермеров, ведущих органическое хозяйство, которые постоянно борются за то, чтобы защитить свои урожаи.

3) ГМО требуют большего использования гербицидов

Большинство генетически-модифицированных культур созданы так, чтобы быть толерантными к средствам от сорняков. С 1996 по 2008 год фермеры США использовали для ГМО примерно 174 тысячи тонн гербицидов. В результате появились "суперсорняки", которые были устойчивы к химическим средствам для их уничтожения. Фермеры вынуждены использовать все большее количество гербицидов с каждым годом. Это не только вредит окружающей среде, но такие продукты, в конечном счете, накапливают в себе высокий процент токсичных химикатов, которые могут привести к бесплодию, гормональным нарушениям, порокам развития и раку.

4) Генная инженерия имеет опасные побочные эффекты

Смешивая гены совершенно несвязанных между собой видов, генная инженерия влечет за собой массу неприятных и неожиданных последствий. Более того, вне зависимости от типов генов, которые внедряются, сам процесс создания генномодифицированного растения может привести к серьезным негативным последствиям, включая токсины, канцерогены, аллергии, нехватку питательных веществ.

5) Правительство закрывает глаза на опасные последствия

Многие последствия ГМО для здоровья и окружающей среды игнорируются правительственными нормами и анализом безопасности. Причинами этого могут быть политические мотивы. Управление по контролю за продуктами и лекарствами США , например, не потребовала ни единого исследования, подтверждающего безопасность ГМО, не требует соответствующей маркировки продуктов и позволяет компаниям отправлять генетически-модифицированные продукты на рынки, не ставя управление в известность.

Они оправдываются тем, что не имеют информации, что ГМ продукты значительно отличаются от обычных. Однако, это ложь. Секретные записки, которые получает Управление от общественности, которая обращается в суд, показывают, что большинство ученых, работающих в управлении, согласны с тем, что ГМО могут вызывать непредсказуемые последствия, которые сложно выявить. Белый Дом дал инструкции Управлению продолжать работу с биотехнологиями.

6) Биотехнологическая промышленность скрывает факты об опасности ГМО

Некоторые компании, работающие с биотехнологиями, пытаются доказать, что продукты с ГМО абсолютно безвредны, используя поверхностные и фальсифицированные данные исследований. Независимые ученые уже давно опровергли эти утверждения, найдя доказательства, что дело обстоит совсем иначе. Подобным компаниям выгодно искажать и отрицать информацию о вреде ГМО, чтобы избежать проблем и остаться на плаву.

7) Независимые исследования и сообщения критикуются и подавляются

Ученых, которые раскрыли правду о ГМО, критикуют, заставляют молчать, поджигают, им угрожают и отказывают в финансировании. Попытки средств массовой информации донести правду о проблеме до общественности подвергаются цензуре.

8) ГМО вредят окружающей среде

Генетически модифицированные культуры и связанные с ними гербициды вредят птицам, насекомым, земноводным, морским обитателям и организмам, живущим под землей. Они снижают разнообразие видов, загрязняют воду и не являются экологически чистыми. Например, ГМ культуры вытеснили бабочек монархов, численность которых упала в США на 50 процентов.

Гербициды, как показали исследования, вызывают врождённые пороки развития у земноводных, гибель эмбрионов, нарушения эндокринных желез и повреждения органов у животных, даже в очень малых дозах. Генетически модифицированная канола (разновидность рапса) распространилась в дикую природу в Северной Дакоте и Калифорнии, угрожая тем, что может перенести гены устойчивости к гербицидам другим растениям и сорнякам.

9) ГМО не увеличивают урожайность и не могут помочь в борьбе с голодом

При том, что экологичные сельскохозяйственные методы без использования ГМО, которые применяются в развивающихся странах, увеличили урожайность на 79 процентов, методы с использованием ГМО в среднем не помогают увеличить урожайность совсем.

Международная организация по оценке сельскохозяйственного знания, науки и технологии развития , ссылаясь на мнение 400 ученых и поддержку 58 стран, сообщила о том, что урожайность генетически модифицированных культур "крайне изменчива" и в некоторых случаях даже начинает снижаться. Также она подтвердила, что с помощью ГМО в настоящее время невозможно бороться с голодом и бедностью, улучшить питание, здоровье и средства существования в сельской местности, защитить экологию, помочь социальному развитию.

ГМО используют те средства и ресурсы, которые можно было бы применить для разработки и использования других более безопасных методов и более надежных технологий.

10) Избегая продукты с ГМО, вы можете внести свой вклад, чтобы помочь избавиться от негативных последствий

Так как ГМО не дают потребителю никакой пользы, многие могут отказаться от них, следовательно, производить такие продукты станет невыгодно и компании перестанут их предлагать. В Европе, например, еще в 1999 году объявили об опасности ГМО, предупредив о потенциальном вреде этих продуктов.

Сейчас наука шагнула далеко вперед, но далеко не все открытия последних лет безопасны для человека. На прилавках магазинов то и дело попадаются ГМО-продукты, опасность которых весьма велика. Рассмотрим, что это за продукты и почему нежелательно употреблять их в пищу.

ГМО продукты - немного истории

Аббревиатура ГМО расшифровывается как «генетически модифицированный организм», иными словами, это организм, в природную структуру которого вмешался человек. Генная инженерия существенно продвинулась в последнее время, но безопасно ли употреблять пищу, которая не создана матерью-природой, а по своей сути является искусственным мутантом?

Под определение ГМО попадают овощи, мясо, различные микроорганизмы. Изначально вмешательство на генном уровне преследовало благую цель – сделать продукт более совершенным, решить проблемы, которые возникали при его массовом выращивании, облегчить ведение хозяйства. Однако из-за этого нарушается естественный процесс, в ходе которого гены меняются в случайном порядке.

В настоящее время ученые используют трансгены и аналогичные организмы, благодаря которым можно совершать искусственную коррекцию растения или животного.

Чем опасны ГМО-продукты?

В наши дни ученые уже получили конкретные результаты исследований, в которых определено, что продукты ГМО на внешнем уровне безопасны для организма человека. Однако никто не может с уверенностью, сказать, что будет с потомками человека, который регулярно употреблял генно-мутированные продукты.

К тому же, локальные исследования показывают, что проблемы могут настигнуть человека и раньше. Так, например, крысы, которых в качестве эксперимента кормили ГМО-картофелем, который убивает колорадского жука, четко проявляли признаки воздействия продукта. У них менялся состав крови, увеличивались внутренние органы и проявлялись самые разные патологии. Ничего подобного не возникало у крыс, которых кормили обычным картофелем.

Во многих странах, в том числе и в России, происходит государственный контроль и регулирование поставок продуктов, в составе которых числится ГМО. В список продуктов, которые официально могут быть изготовлены с использованием ГМО и оказаться на прилавках магазинов, входят такие:

  • кукуруза;
  • картофель;
  • сахарная свекла.

Кроме этого, в разных странах присутствуют также генетически модифицированные томаты, рапс, пшеница, дыня, кабачки, лен, папайя, хлопок. Сложно выбрать самые опасные продукты ГМО, поскольку все они являются одинаково опасными.

Как выбрать продукты без ГМО?

Для того, чтобы выбрать правильные продукты, нужно научиться находить опасные. В целом, продукты, содержащие ГМО, можно разделить на три категории:

1. Продукты, в которых ГМО присутствует в качестве компонента или ингредиента. Как правило, эти компоненты – красители, подсластители, стабилизаторы. Они могут оказаться в любом продукте, на этикетке которого значится Е000 (вместо 000 могут быть любые цифры). В эту категорию попадают многие приправы, колбасы, сосиски, шоколадные батончики, йогурты, сладости и масса других продуктов – внимательно читайте этикетку!

2. Продукты переработки сырья, полученного с применением технологий ГМО – это соевый сыр или творог, соевое молоко, чипсы, томатная паста, кукурузные хлопья и т.д.

3. Трансгенные овощи и фрукты. Узнать их очень просто – они идеальны, все ровные, гладкие, без изъянов. Посмотрите на садовые яблоки, которые продают в сентябре, и сравните их с красными красавцами, лежащими на полках круглый год.

Сложно описать, как проверить продукты на ГМО, ведь подвох может встречаться где угодно. Избегайте перечисленных продуктов, выбирайте свежие фрукты, молочные продукты и мясо с фермерских хозяйств.